

ASX Announcement: 09 May 2022

Stunning Drill Result from Greater Duchess Project – Carnaby Resources Limited

DiscovEx Resources Limited (**Company or DiscovEx**) provides the attached announcement by Carnaby Resources Limited (ASX: CNB) (Carnaby) as it relates to the Greater Duchess Project.

The announcement relates to the Southern Hub Tenements, located in the Mt. Isa Region of Queensland where DiscovEx holds a 17.5% free-carried interest in EPM 9083, EPM 11013, EPM 14366, EPM 14369, EPM 17637, EPM 18223, EPM 18990, EPM 19008, EPM 25435, EPM 25439, EPM 25853, EPM 25972.

Authorised for release by and investor enquiries to: Toby Wellman Managing Director T: 08 9380 9440

For and on behalf of DISCOVEX RESOURCES LIMITED

STUNNING DRILL RESULTS FROM GREATER DUCHESS PROJECT 68m @ 2.4% Cu, 0.4g/t Au from 40m Inc. 42m @ 3.6% Cu, 0.5 g/t Au

Carnaby Resources Limited (ASX: CNB) (Carnaby or the Company) is pleased to announce new exploration results at the Greater Duchess Copper Gold Project in Mt Isa, Queensland.

Highlights

Lady Fanny Prospect:

- LFRC120 has intersected the widest high grade intercept to date with a result of 68m @ 2.4% copper, 0.4 g/t gold from 40m including 42m @ 3.6% copper, 0.5 g/t gold from 63m.
- Wide, high grade and very shallow copper gold mineralisation now been intersected over a core zone of over 300m strike length which remains strongly open.
- Numerous other new results and visual intersections have 0 been received including a 30m zone of very strong copper sulphides intersected in LFRC129 (RESULTS PENDING).

Nil Desperandum Prospect:

- NLDD086 has confirmed in diamond core drilling the high 0 grade breccia shoot orientation, geometry and true thickness in the discovery RC hole NLDD044. Hole NLDD086 intersected 33m @ 4.0% copper, 0.5 g/t gold from 264m including 18m @ 6.7% copper, 0.8 g/t gold.
- The high grade breccia shoot discovery has been extended a further 180m downplunge. Results include 26m @ 2.4% copper, 0.3 g/t gold in NLDD080 and 17m @ 2.2% copper, 0.4 g/t gold in NLDD082. Extensional drilling is ongoing.

The Company's Managing Director, Rob Watkins commented:

"These stunning drill results clearly demonstrate the resource and development potential of the Greater Duchess Copper Gold Project. We are discovering and building a pipeline of exceptional and highly desirable copper gold deposits whose intrinsic value will only grow over time as we define and grow the maiden resource and move towards a development timetable."

ASX Announcement 9 May 2022

Market Cap (@ \$1.13) \$162M Cash \$23M¹

Peter Bowler, Non-Exec Chairman Rob Watkins, Managing Director Greg Barrett, Non-Exec Director & Company Secretary

- Proven and highly credentialed management team
- Tight capital structure and strong cash
- Nil Desperandum and Lady Fanny Iron the Greater Duchess Copper Gold Project, Mt Isa inlier, Queensland.
- Greater Duchess Copper Gold Project, numerous camp scale IOCG deposits
- Projects near to De Grey's Hemi gold discovery on 442 km² of highly prospective tenure
- Project (granted ML's) in Qld, historically one of Australia highest grade and most profitable gold mines producing 511 koz at 22 g/t gold

Registered Office

78 Churchill Avenue Subiaco Western Australia 6008

T: +61 8 9320 2320

GREATER DUCHESS COPPER GOLD PROJECT

New Reverse Circulation and Diamond Drilling results and further visual estimations from ongoing drilling at the Lady Fanny and Nil Desperandum copper gold discoveries are presented below and in Tables 1 & 2 of Appendix 1.

Drilling continues with two drill rigs, a dedicated RC and a dedicated Diamond Drill rig.

A major new program of Induced Polarisation (IP) surveys will commence next week targeting the highly prospective three-kilometre corridor between Nil Desperandum and Lady Fanny and the northern extension of Lady Fanny (Figure 6). Additional IP surveys will also be completed at Duchess and at Mount Hope.

LADY FANNY PROSPECT (CNB 100%)

Stunning drill results and visual intersections continue to be received from RC drilling at the Lady Fanny discovery as detailed below (Figure 1 & 2). The first diamond drill hole (LFDD126) has been completed at Lady Fanny, intersecting broad zones of copper gold mineralisation and confirming that the mineralisation is hosted concordantly within a large steeply dipping shear zone (Results Pending).

Wide, high grade and very shallow copper gold mineralisation has now been intersected over a core zone of over 300m strike length which remains strongly open to the north and at depth.

The Lady Fanny discovery is continuing to show exceptional potential for a large open pittable resource which continues to grow with ongoing drilling.

LFRC120

A stunning result has been received from LFRC120 of;

68m @ 2.4% copper, 0.4 g/t gold from 40m

Including 42m @ 3.6% copper, 0.5 g/t gold from 63m

Including 9m @ 7.8% copper, 1.5 g/t gold from 63m

LFRC120 is the first of a series of new drill holes to test the central workings area where difficult drill pad access caused by high topographic relief and numerous shallow historical workings resulted in delayed access. The result in LFRC120 links to the previously reported high grade results to the south hosted in a steeply dipping shear zone.

Wide and high grade copper gold mineralisation has now been defined over a greater than 300m strike length with mineralisation outcropping at surface and in shallow historical workings mined at the turn of the century and in the late 1960's and early 1970's.

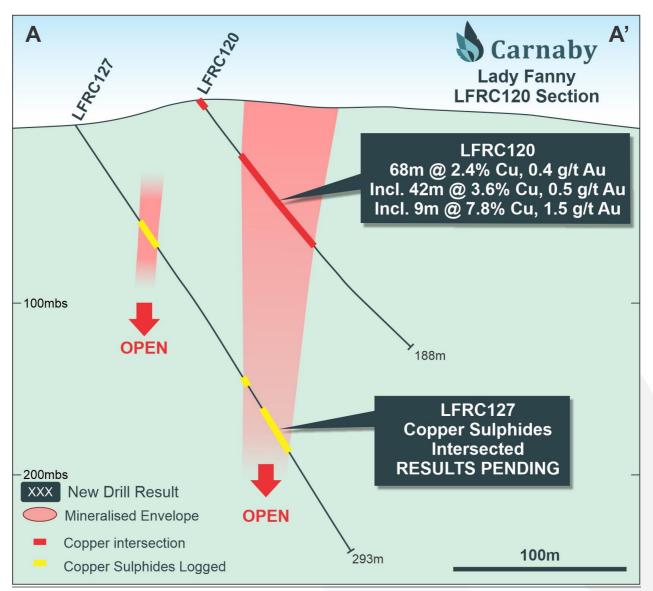


Figure 1. Lady Fanny RC Drill Section Showing Drill Hole LFRC120.

LFRC129

LFRC129 was drilled 60m north of the stunning drill result in LFRC120 above (Figure 2).

LFRC129 has intersected a ~30m downhole interval very strong zone of copper sulphides from 66m to 96m with results pending (see photo below). Visual logging of copper sulphide (chalcopyrite) percentages from this hole and all other holes where assays have not yet been received is presented in Appendix 1, Table 2.

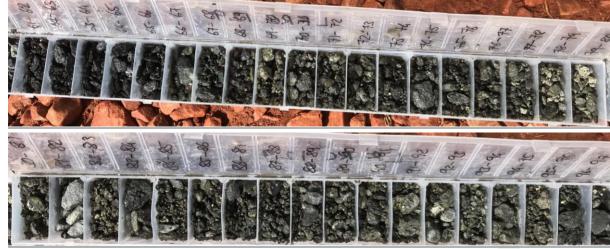


Photo of copper sulphides intersected in LFRC129

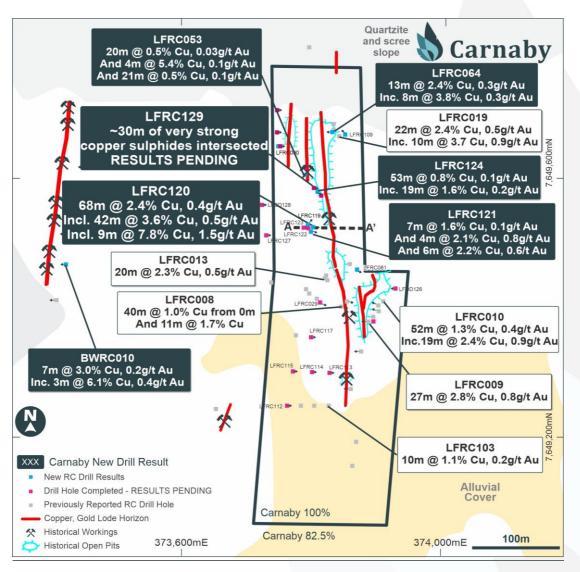


Figure 2. Lady Fanny Plan Showing Location of New RC Drill Results.

LFRC064

LFRC064 was drilled up dip from a previously released result of 22m @ 2.4% copper intersected in LFRC019. The results in LFRC019 and LFRC064 represent the northern most defined extent of shallow, wide and high grade copper mineralisation (Figure 2). Drilling is currently focussing on extending the high grade copper mineralisation to the north, where a large IP chargeability anomaly is located.

LFRC064 intersected;

13m @ 2.4% copper, 0.3 g/t gold from 21m

Including 8m @ 3.8% copper, 0.3 g/t gold from 26m

LFRC124

LFRC124 was also collared 60m north of LFRC120 and was drilled up dip from the visual copper sulphide intersection on LFRC129 indicating a steep west dip to the mineralisation. LFRC124 intersected;

53m @ 0.8% copper, 0.1 g/t gold from 36m

Including 19m @ 1.6% copper, 0.2 g/t gold from 37m

LFRC119, 121-123

Four other RC holes were fanned out from the same drill pad as LFRC120 due to the difficult access and high topographic relief making it difficult to establish regularly spaced east west drill traverses. Results have been received from LFRC119 and LFRC121 are presented in Table 1. Not all holes tested the main mineralised shear zone. Results from the other two holes LFRC122-123 are pending.

LFRC121 intersected;

7m @ 1.6% copper, 0.2 g/t gold from 68m

Including 2m @ 5.0% copper, 0.4 g/t gold from 69m

11m @ 0.9% copper, 0.3 g/t gold from 87m

Including 4m @ 2.1% copper, 0.8 g/t gold from 87m

16m @ 1.3% copper, 0.3 g/t gold from 136m

Including 6m @ 2.2% copper, 0.6 g/t gold from 146m

BURKE & WILLS PROSPECT (CNB 82.5%, DCX 17.5%)

A total of five RC holes have been drilled along the Burke & Wills shallow historical workings with new results received for BWRC010 which intersected **7m @ 3.0% copper**, 0.2 g/t gold from 46m including **3m @ 6.1% copper**, 0.4 g/t gold from 47m (Figure 2). Every RC hole drilled has intersected shallow high grade copper gold mineralisation of similar grade indicating excellent continuity of the mineralisation. The drilling completed to date has defined steeply east dipping shallow copper mineralisation over greater than 200m strike and completely open in all directions.

NIL DESPERANDUM PROSPECT (CNB 82.5%, DCX 17.5%)

Ongoing diamond drilling continues to extend the high grade discovery down plunge where it still remains completely open (Figure 3). The excellent continuity, width, grade and geometry of the high grade breccia shoot remains highly encouraging for future resource and development potential.

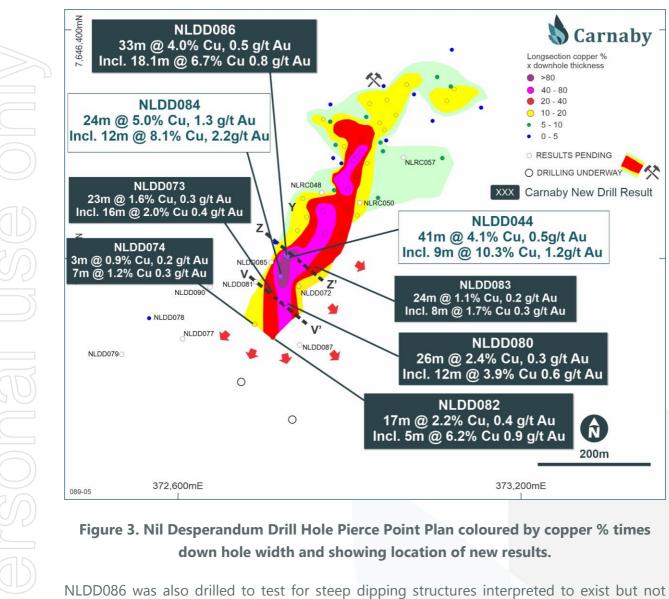
The new diamond drill results reported below have extended the high grade breccia shoot discovery by approximately 180m which has now been drill defined over a 300m downplunge extent. Combined with the breccia shoot previously defined to surface, the drilling to date has defined high grade breccia hosted copper gold mineralisation over a down plunge extent of over 600m. The high grade breccia zone remains completely open at depth.

NLDD086

Diamond drill hole NLDD086 was drilled as an angled hole to confirm the geometry, dip and western boundary of the spectacular discovery hole breccia shoot intersected in NLDD044 of 41m @ 4.1% copper (see ASX release 29 December 2021). NLDD086 has confirmed the previously interpreted geometry, dip and true thickness of the breccia shoot hosted in a SSW plunging and moderately SE dipping structure.

NLDD086 intersected;

33m @ 4.0% copper, 0.5 g/t gold from 264m


Including 27m @ 5.0% copper, 0.6 g/t gold from 271m

Including 18m @ 6.7% copper, 0.8 g/t gold from 274m

~~

Ñ

evident in previous vertical drill holes. NLDD086 did intersect late brittle fault structures bounding the breccia shoot lode. These faults are considered to have formed post mineralisation. The presence of these late brittle faults, as indicated in Figure 4, is not unexpected and is evidence of a long-lived structure. Similar type faults are also found bounding the nearby Tick Hill gold deposit.

The new drill result in NLDD083 (Figure 4) is interpreted to represent the down plunge extension of the initially defined breccia shoot that has been drilled from surface to over 400m down plunge. It is interpreted that this breccia mineralisation is linked to the high grade breccia shoot discovery potentially offset by a late structure as indicated in Figure 4.

Further detailed structural analysis is underway to better define the controls of the high grade breccia shoots to aid in targeting further extensions and repetitions.

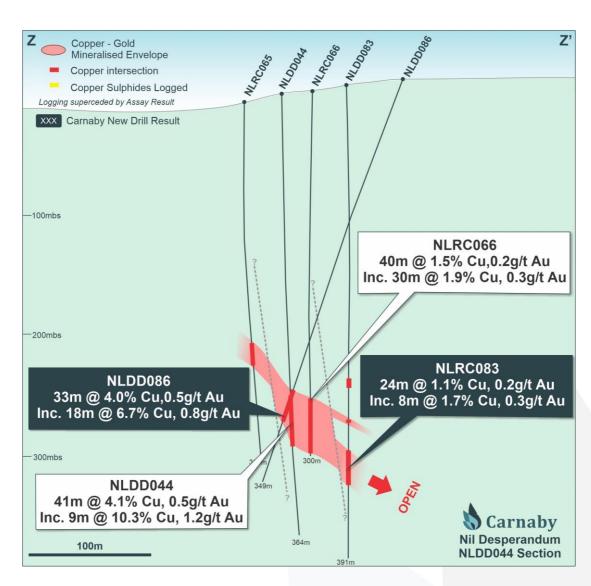
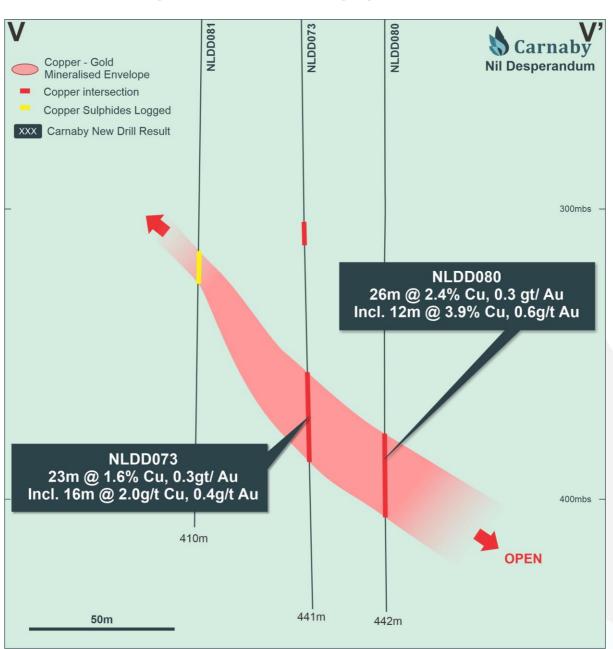


Figure 4. NLDD086 drill section.

NLDD073 & NLDD080

Diamond drill holes NLDD073 and NLDD080 intersected the breccia shoot approximately 75m down plunge from a previously reported result of 24m @ 5.0% copper, 1.3 g/t gold in NLDD084 (see ASX release 4 April 2022). Both new holes intersected broad zones of high grade copper gold mineralisation in the southeast dipping breccia shoot, again confirming excellent widths and down plunge continuity of the breccia hosted mineralisation (Figure 3 & 5).


Results from NLDD073 and NLDD080 are summarised as;

NLDD073 23m @ 1.6% copper, 0.3 g/t gold from 367m

Including 16m @ 2.0% copper, 0.4 g/t gold from 373m

Including 12m @ 3.9% copper, 0.6 g/t gold from 382m

Figure 5. NLDD073 and NLDD080 drill section showing the new results.

NLDD082

Diamond drill hole NLDD082 has extended the Nil Desperandum high grade breccia shoot discovery by approximately 180m down plunge from a previously reported result of 24m @ 5.0% copper, 1.3 g/t gold in NLDD084 and to over 300m down plunge overall. The result in

NLDD082 remains completely open at depth and is currently being followed up with two extensional drill holes as shown in Figure 3.

Results from NLDD082 are summarised as;

NLDD082 17m @ 2.2% copper, 0.4 g/t gold from 453m

Including 11m @ 3.1% copper, 0.6 g/t gold from 458m

Including 5m @ 6.2% copper, 0.9 g/t gold from 465m

NLDD078

Diamond drill hole NLDD078 targeted an IP chargeability anomaly approximately 200m southwest of the main high grade breccia shoot discovery (Figure 3). The drill hole intersected several zones of favourable host rock biotite schist and extensive alteration. Copper sulphide mineralisation was intersected in a steeply dipping structure recording a downhole intercept of 5m @ 0.4% copper from 408m. Results from nearby hole NLDD077 also targeting the IP anomaly are awaited. The source of the IP chargeability anomaly is yet to be explained and angled drilling will be completed to target potential steeply dipping mineralisation.

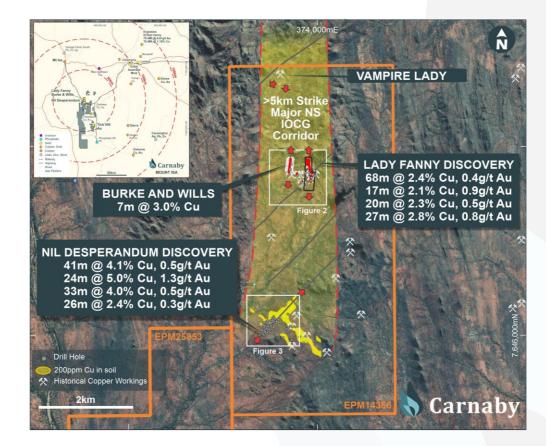


Figure 6. Location Plan of Lady Fanny and Nil Desperandum Discoveries.

Further information regarding the Company can be found on the Company's website <u>www.carnabyresources.com.au</u>

For further information please contact: Robert Watkins, Managing Director +61 8 9320 2320

Competent Person Statement

The information in this document that relates to exploration results is based upon information compiled by Mr Robert Watkins. Mr Watkins is a Director of the Company and a Member of the AUSIMM. Mr Watkins consents to the inclusion in the report of the matters based upon the information in the form and context in which it appears. Mr Watkins has sufficient experience which is relevant to the style of mineralisation and type of deposit under consideration and to the activity which is undertaken to qualify as a Competent Person as defined in the December 2012 edition of the "Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves" (JORC Code).

Disclaimer

References may have been made in this announcement to certain ASX announcements, including references regarding exploration results, mineral resources and ore reserves. For full details, refer to said announcement on said date. The Company is not aware of any new information or data that materially affects this information. Other than as specified in this announcement and the mentioned announcements, the Company confirms that it is not aware of any new information or data that materially affects the information included in the original market announcements and, in the case of estimates of Mineral Resources, Exploration Target(s) or Ore Reserves that all material assumptions and technical parameters underpinning the estimates in the relevant market announcement continue to apply and have not materially changed. The Company confirms that the form and context in which the Competent Person's findings are presented have not been materially modified from the original market announcement.

Recently released ASX Material References that relate to this announcement include:

Acquisition of Mount Hope Mining Lease, 11 April 2022Exceptional Drill Results at Greater Duchess 24m @ 5% Copper, 4 April 2022Step Out Drilling Hits South West Extension of Nil Desperandum, 8 March 2022Lady Fanny Shines and Expands On New IP Surveys and Drilling, 25 February 2022Lady Fanny IP Survey lights Up Strong Chargeability Targets, 17 February 2022Nil Desperandum Continues To Grow, 11 February 2022Major Discovery Confirmed at Nil Desperandum, 4 February 2022Lady Fanny Prospect – LFRC008 40m @ 1.0%Cu And 11m @ 1.7%Cu, 17 January 2022Strong Drill Results Lady Fanny – 27m @ 2.8% Copper, 13 January 2022Major Copper Gold Discovery 41m @ 4.1% Cu Inc 9m @ 10.3% Cu, 29 December 2021CNB: Re-release of ASX Announcement dated 17 December, 21 December 2021

APPENDIX ONE

Details regarding the specific information for the drilling discussed in this news release are included below in Table 1 and Table 2.

Table 1. Drill Hole Details

LADY FANNY PROSPECT (CNB 100%)

Hole ID	Easting	Northing	RL	Dip	Azimuth	Total Depth (m)	Depth From (m)	Interv (m)	al Cu %	Au (g/t)
LFRC053	373792	7649606	458	-70.1	93.8	200	Surface And 45 Incl 45 And 98 And 127	20 4 2 6 21	0.5 5.4 10.1 0.5 0.5	0.03 0.05 0.1 0.2 0.1
LFRC064	373835	7649672	442	-60.0	260.9	150	Surface And 21 Incl 26	5 13 8	0.7 2.4 3.8	0.3 0.3 0.3
LFRC081	373871	7649460	427	-53.8	132	94	67	2	0.3	0.02
LFRC090	373750	7649650	454	-68.0	90	124		NS	I	•
LFRC109	373853	7649668	441	-72.5	283.1	160	16 -		1.1	0.2
LFRC119	373803	7649522	439	-74.9	54.7	110	73	18	0.2	0.05
LFRC120	373807	7649517	439	-55.7	98.3	188	25 And 40 Incl 63 Incl 63	5 68 42 9	0.6 2.4 3.6 7.8	0.1 0.4 0.5 1.5
LFRC121	373805	7649516	439	-67.2	121.1	156	52 And 68 Incl 69 And 87 Incl 87 And 136 Incl 146	8 7 11 4 16 6	0.3 1.6 5.0 0.9 2.1 1.3 2.2	0.1 0.4 0.3 0.8 0.3 0.3 0.6
LFRC124	373812	7649579	457	-71.0	120.2	218	36 Incl 37	53 19	0.8 1.6	0.1 0.2
LFRC112	373763	7649248	410	-55.2	89.4	190	ASSA	AY RESULT	s pendin	IG
LFRC113	373828	7649300	414	-55.5	88.9	80	ASSA	AY RESULT	rs pendin	IG
LFRC114	373801	7649301	413	-55.2	89.7	142	ASSA	AY RESULT	s pendin	IG
LFRC115	373771	7649302	411	-56.0	89.3	192	ASSA	AY RESULT	s pendin	IG
LFRC117	373800	7649354	415	-55.6	90.0	192	ASSA	AY RESULT	s pendin	IG
LFRC122	373807	7649518	439	-64.2	87.1	208	ASSA	AY RESULT	s pendin	IG
LFRC123	373804	7649519	439	-55.4	75.5	168	ASSA	AY RESULT	s pendin	IG
LFRC127	373731	7649513	424	-55.1	90.9	300	ASSA	AY RESULT	s pendin	IG
LFRC129	373804	7649584	458	-74.7	115.3	294	ASSA	AY RESULT	s pendin	IG
LFDD126	373931	7649430	419	-55.3	282.2	304	ASSA	AY RESULT	s pendin	IG
LFDD128	373725	7649559	429	-55.5	92.5	130	ASSA	AY RESULT	s pendin	IG
BWRC010	373422	7649467	410	-52.6	285	80	46	7	3.0	0.2

NIL DESPERANDUM PROSPECT (CNB 82.5%, DCX 17.5%)

2	Hole ID	Easting	Northing	RL	Dip	Azimuth	Total Depth (m)	Depth From (m)	Interval (m)	Cu %	Au (g/t)
								316.9	8.1	1.5	0.1
	NLDD072	372821	7645972	406	-89.1	179.9	442	Incl 316.9	0.4	15.6	0.2
								And 368	13.9	0.5	0.05
								363	27.8	1.33	0.3
	NLDD073	372760	7645936	407	-89.7	273.1	440.9	Incl 367	22.8	1.6	0.3
								Incl 373.1	15.7	2.0	0.4
	NLDD074	372755	7645881	401	-89.8	326.5	538.1	412.7	3.3	0.9	0.2
		0.1.00	10.0001		0010	01010		And 430	6.8	1.2	0.3
	NLDD078	372565	7645893	389	-89.7	213.9	524.2	408	4.6	0.4	0.04
	NLDD080	372785	7645921	407	-89.6	3.29	441.8	381	26	2.4	0.3
	NLDD000	572705	1043521	407	05.0	5.25	141.0	Incl 381.7	12.2	3.9	0.6
								453	16.8	2.2	0.4
	NLDD082	372787	7645863	400	-89.7	165.6	525.8	Incl 458	11.2	3.1	0.6
								Incl 464.6	4.6	6.2	0.9
								241	7	0.4	0.04
	NLDD083	372835	7645990	409	-88.7	133.8	390.8	Incl 303	24	1.1	0.2
-								Incl 319	8	1.7	0.3
		272070	7645050	410	60 G	200.0	2407	264	33.3	4.0	0.5
	NLDD086	372870	7645958	413	-69.6	300.9	348.7	Incl 270.5	26.8 18.1	5.0 6.7	0.6 0.8
╞		272017	7646007	205	00.2	150.0	200	Incl 273.7			
-	NLRC050	372917	7646097	395	-88.3	150.6	300		Y RESULTS P		
	NLRC057	372994	7646177	395	-88.5	104.7	200	ASSA	Y RESULTS P	PENDING	3
	NLDD078	372565	7645893	389	-89.7	213.9	524	ASSA	Y RESULTS P	PENDIN	Ĵ
	NLDD081	372735	7645953	404	-89.7	67.3	410	ASSA	Y RESULTS P	ENDIN	3
	NLDD087	372820	7645838	399	-89.2	7.7	650	ASSA	Y RESULTS P	ENDIN	Ĵ
	NLDD090	372747	7645886	401	-70.2	304.9	448	ASSA	Y RESULTS P	PENDIN(G

Table 2. Visual Estimates and Description of Sulphide Mineralisation.

In relation to the disclosure of visual mineralisation, the Company cautions that estimates of sulphide mineral abundance from preliminary geological logging should not be considered a proxy for quantitative analysis of a laboratory assay result. Assay results are required to determine the actual widths and grade of the visible mineralisation.

Hole_ID	From (m)	To (m)	Int (m)	Sulphide 1	%	Style	Sulphide 2	%	Style
LFRC112	87.0	88.0	1	Chalcopyrite	1	Trace Disseminated	Pyrite	1	Trace Disseminated
LFRC112	88.0	89.0	1	Chalcopyrite	3	Disseminated	Pyrite	1	Trace Disseminated
LFRC112	89.0	91.0	2	Chalcopyrite	1	Trace Disseminated	Pyrite	1	Trace Disseminated
LFRC112	97.0	98.0	1	Chalcopyrite	2	Disseminated			
LFRC112	127.0	129.0	2	Chalcopyrite	1	Trace Disseminated	Pyrite	1	Stringer
LFRC112	130.0	131.0	1	Chalcopyrite	1	Trace Disseminated			
LFRC113	44.0	45.0	1	Chalcopyrite	1	Trace Disseminated			
LFRC113	53.0	54.0	1	Chalcopyrite	1	Trace Disseminated			
LFRC113	56.0	57.0	1	Chalcopyrite	2	Trace Disseminated	Pyrite	1	Trace Disseminated

LADY FANNY PROSPECT (CNB 100%)

Hol	e_ID	From (m)	To (m)	Int (m)	Sulphide 1	%	Style	Sulphide 2	%	Style
LFRO	C113	62.0	63.0	1	Chalcopyrite	2	Trace Disseminated	Pyrite	1	Trace Disseminated
LFR	C113	70.0	71.0	1	Chalcopyrite	1	Trace Disseminated	Pyrite	1	Trace Disseminated
LFRO	C114	22.0	23.0	1	Chalcopyrite	1	Trace Disseminated	Pyrite	1	Trace Disseminate
LFRO	C114	25.0	26.0	1	Chalcopyrite	1	Trace Disseminated	Pyrite	1	Trace Disseminate
LFRO	C114	39.0	40.0	1	Chalcopyrite	2	Trace Disseminated	Pyrite	2	Trace Disseminate
LFRO	C114	40.0	41.0	1	Chalcopyrite	1	Trace Disseminated	Pyrite	1	Trace Disseminate
LFRO	C114	42.0	43.0	1	Chalcopyrite	1	Trace Disseminated	Pyrite	1	Trace Disseminate
LFRO	C114	44.0	45.0	1	Chalcopyrite	1	Trace Disseminated	Pyrite	2	Trace Disseminate
LFRO	C114	45.0	46.0	1	Chalcopyrite	2	Trace Disseminated	Pyrite	1	Trace Disseminate
LFRO	C114	46.0	47.0	1	Chalcopyrite	1	Stringer	Pyrite	1	Stringer
LFRO	C114	47.0	48.0	1	Chalcopyrite	2	Disseminated	Pyrite	1	Trace Disseminate
LFRO	C114	60.0	61.0	1	Chalcopyrite	3	Disseminated	Pyrite	1	Trace Disseminate
LFR	C114	61.0	62.0	1	Chalcopyrite	4	Matrix	Pyrite	1	Trace Disseminate
LFRO	C114	62.0	63.0	1	Chalcopyrite	3	Disseminated	Pyrite	1	Trace Disseminate
LFR	C114	63.0	64.0	1	Chalcopyrite	1	Trace Disseminated			
	C114	64.0	65.0	1	Chalcopyrite	2	Disseminated			
LFRO	C114	74.0	75.0	1	Chalcopyrite	1	Matrix	Pyrite	2	Trace Disseminate
	C114	76.0	77.0	1	Chalcopyrite	2	Matrix	Pyrite	1	Trace Disseminate
	C114	77.0	78.0	1	Chalcopyrite	1	Trace Disseminated	Pyrite	1	Trace Disseminate
	C114	80.0	81.0	1	Chalcopyrite	1	Trace Disseminated		-	
	C114	83.0	84.0	1	Chalcopyrite	1	Trace Disseminated	Pyrite	3	Trace Disseminate
	C114	89.0	90.0	1	Chalcopyrite	1	Trace Disseminated	Pyrite	1	Trace Disseminate
	C114	91.0	92.0	1	Chalcopyrite	1	Trace Disseminated	. jiito		
	C114	92.0	93.0	1	Chalcopyrite	2	Trace Disseminated			
	C114	93.0	94.0	1	Chalcopyrite	1	Trace Disseminated	Pyrite	1	Trace Disseminate
	C114	96.0	97.0	1	Chalcopyrite	1	Trace Disseminated	Pyrite	1	Trace Disseminate
	C114	101.0	102.0	1	Chalcopyrite	3	Matrix	Pyrite	1	Trace Disseminate
	C114	101.0	102.0	1	Chalcopyrite	1	Trace Disseminated	Pyrite	1	Trace Disseminate
	C114	102.0	103.0	1	Chalcopyrite	1	Trace Disseminated	Fynte	1	
	C114	100.0	107.0	1	Chalcopyrite	1	Trace Disseminated	Pyrite	1	Trace Disseminate
	C114	107.0	111.0	2	Chalcopyrite	1	Stringer	Tynte	- '	
	C114	103.0	112.0	1	Chalcopyrite	3	Massive	Pyrite	1	Trace Disseminate
	C114	111.0	112.0	1	Chalcopyrite	3	Disseminated	Pyrite	1	Trace Disseminate
	C114	112.0	115.0	1		1	Trace Disseminated	,	1	Trace Disseminate
					Chalcopyrite	1		Pyrite	1	
	C114	116.0	118.0	2	Chalcopyrite		Trace Disseminated	Pyrite	1	Trace Disseminate
	C114 C114	119.0	120.0	1	Chalcopyrite	1	Trace Disseminated	Diwite	1	Traca Discominate
		137.0	138.0	1	Chalcopyrite	3 1	Disseminated	Pyrite	1	Trace Disseminate
	C114	138.0	139.0	1	Chalcopyrite		Trace Disseminated	Dunita	1	Tara Diana anta
	C115	83.0	84.0	1	Chalcopyrite	1	Trace Disseminated	Pyrite	1	Trace Disseminate
	C115	87.0	88.0	1	Chalcopyrite	1	Trace Disseminated	Pyrite	1	Trace Disseminate
	C115	88.0	89.0	1	Chalcopyrite	2	Trace Disseminated	Pyrite	1	Trace Disseminate
	C115	95.0	96.0	1	Chalcopyrite	3	Matrix			
-	C115	96.0	97.0	1	Chalcopyrite	1	Stringer	D	4	C (1)
	C115	98.0	99.0	1	Chalcopyrite	1	Stringer	Pyrite	1	Stringer
	C115	103.0	104.0	1	Chalcopyrite	1	Trace Disseminated	Pyrite	1	Trace Disseminate
	C115	106.0	107.0	1	Chalcopyrite	1	Stringer		_	· ·
	C115	109.0	110.0	1	Chalcopyrite	2	Matrix	Pyrite	1	Trace Disseminate
	C115	115.0	116.0	1	Chalcopyrite	1	Trace Disseminated		-	
	C115	122.0	123.0	1	Chalcopyrite	2	Trace Disseminated	Pyrite	2	Trace Disseminate
	C115	123.0	126.0	3	Chalcopyrite	1	Trace Disseminated	Pyrite	1	Trace Disseminate
	C115	133.0	135.0	2	Chalcopyrite	1	Trace Disseminated			
	C115	136.0	137.0	1	Chalcopyrite	3	Matrix	Pyrite	3	Disseminated
	C115	139.0	140.0	1	Chalcopyrite	1	Trace Disseminated	Pyrite	2	Disseminated
-	C115	149.0	150.0	1	Chalcopyrite	1	Trace Disseminated	Pyrite	1	Trace Disseminate
	C115	171.0	172.0	1	Chalcopyrite	1	Trace Disseminated	Pyrite	1	Stringer
LFRO	C115	172.0	173.0	1	Chalcopyrite	2	Disseminated	Pyrite	2	Disseminated
LED	C115	174.0	175.0	1	Chalcopyrite	4	Stringer	Pyrite	2	Disseminated

	Hole_ID	From (m)	To (m)	Int (m)	Sulphide 1	%	Style	Sulphide 2	%	Style
	LFRC115 LFRC115	175.0 176.0	176.0 177.0	1	Chalcopyrite Chalcopyrite	2 3	Disseminated Matrix	Pyrite	1	Trace Disseminated
-	LFRC115	170.0	177.0	1	Chalcopyrite	1	Trace Disseminated			
	LFRC115 LFRC115	177.0	178.0	1	Chalcopyrite	1	Trace Disseminated	Durito	1	Trace Disseminated
								Pyrite		
ŀ	LFRC117	40.0	41.0	1	Chalcopyrite	1	Trace Disseminated	Pyrite	2	Stringer
-	LFRC117	41.0	42.0	1	Chalcopyrite	1	Trace Disseminated		4	T D ¹ · ·
	LFRC117	42.0	43.0	1	Chalcopyrite	2	Trace Disseminated	Pyrite	1	Trace Disseminate
-	LFRC117	43.0	44.0	1	Chalcopyrite	2	Massive	Pyrite	2	Trace Disseminate
-	LFRC117	44.0	45.0	1	Chalcopyrite	1	Trace Disseminated	Pyrite	1	Massive
	LFRC117	45.0	46.0	1	Chalcopyrite	1	Trace Disseminated	Pyrite	3	Massive
	LFRC117	46.0	47.0	1	Chalcopyrite	2	Trace Disseminated	Pyrite	5	Massive
	LFRC117	47.0	48.0	1	Chalcopyrite	1	Trace Disseminated	Pyrite	1	Trace Disseminate
Ļ	LFRC117	48.0	49.0	1	Chalcopyrite	1	Trace Disseminated	Pyrite	3	Matrix
	LFRC117	49.0	50.0	1	Chalcopyrite	2	Matrix	Pyrite	1	Trace Disseminate
	LFRC117	50.0	51.0	1	Chalcopyrite	1	Trace Disseminated			
/	LFRC117	60.0	61.0	1	Chalcopyrite	2	Matrix	Pyrite	1	Trace Disseminate
	LFRC117	65.0	66.0	1	Chalcopyrite	1	Trace Disseminated			
	LFRC117	68.0	69.0	1	Chalcopyrite	1	Trace Disseminated			
Ī	LFRC117	74.0	75.0	1	Chalcopyrite	1	Stringer	Pyrite	2	Stringer
Ī	LFRC117	76.0	77.0	1	Chalcopyrite	1	Trace Disseminated	Pyrite	1	Trace Disseminate
Ī	LFRC117	78.0	79.0	1	Chalcopyrite	3	Disseminated			
Ī	LFRC117	80.0	81.0	1	Chalcopyrite	2	Trace Disseminated	Pyrite	1	Trace Disseminate
	LFRC117	83.0	84.0	1	Chalcopyrite	3	Trace Disseminated	Pyrite	4	Trace Disseminate
N	LFRC117	84.0	85.0	1	Chalcopyrite	1	Trace Disseminated	i ynte		
Y	LFRC117	85.0	86.0	1	Chalcopyrite	1	Trace Disseminated			
-	LFRC117	88.0	89.0	1		3	Disseminated			
-		89.0	90.0		Chalcopyrite					
-	LFRC117			1	Chalcopyrite	1	Trace Disseminated			
+	LFRC117	90.0	91.0	1	Chalcopyrite	3	Disseminated	D 11	2	D ¹ · · · ·
	LFRC117	91.0	92.0	1	Chalcopyrite	5	Matrix	Pyrite	2	Disseminated
-	LFRC117	93.0	94.0	1	Chalcopyrite	2	Trace Disseminated	Pyrite	1	Trace Disseminate
1	LFRC117	94.0	95.0	1	Chalcopyrite	1	Trace Disseminated	Pyrite	1	Stringer
/	LFRC117	95.0	96.0	1	Chalcopyrite	2	Trace Disseminated	Pyrite	2	Trace Disseminate
-	LFRC117	96.0	97.0	1	Chalcopyrite	2	Trace Disseminated	Pyrite	1	Trace Disseminate
	LFRC117	97.0	98.0	1	Chalcopyrite	1	Trace Disseminated	Pyrite	1	Trace Disseminate
1	LFRC117	98.0	99.0	1	Chalcopyrite	6	Massive	Pyrite	1	Trace Disseminate
	LFRC117	99.0	100.0	1	Chalcopyrite	10	Massive	Pyrite	3	Matrix
Ч	LFRC117	100.0	101.0	1	Chalcopyrite	6	Matrix	Pyrite	1	Trace Disseminate
	LFRC117	101.0	102.0	1	Chalcopyrite	2	Trace Disseminated			
	LFRC117	102.0	103.0	1	Chalcopyrite	3	Trace Disseminated		1	
-	LFRC117	103.0	104.0	1	Chalcopyrite	4	Massive	Pyrite	3	Matrix
ľ	LFRC117	104.0	105.0	1	Chalcopyrite	5	Matrix	Pyrite	2	Matrix
ľ	LFRC117	105.0	106.0	1	Chalcopyrite	3	Matrix	Pyrite	2	Matrix
ŀ	LFRC117	106.0	110.0	4	Chalcopyrite	1	Trace Disseminated	Pyrite	1	Trace Disseminate
t	LFRC117	110.0	111.0	1	Chalcopyrite	2	Stringer	Pyrite	1	Trace Disseminate
t	LFRC117	111.0	112.0	1	Chalcopyrite	1	Trace Disseminated	Pyrite	3	Matrix
ł	LFRC117	111.0	112.0	1	Chalcopyrite	3	Disseminated	Pyrite	2	Disseminated
ŀ	LFRC117	112.0	113.0	1	Chalcopyrite	10	Matrix	Pyrite	4	Disseminated
ŀ	LFRC117 LFRC117	120.0	121.0	1	Chalcopyrite	10	Trace Disseminated	Pyrite	4	Matrix
┢					12					
ŀ	LFRC117	121.0	122.0	1	Chalcopyrite	1	Trace Disseminated	Pyrite	15	Massive
╞	LFRC117	124.0	125.0	1	Chalcopyrite	1	Trace Disseminated	Pyrite	2	Trace Disseminate
ŀ	LFRC117	127.0	128.0	1	Chalcopyrite	1	Trace Disseminated	Pyrite	1	Trace Disseminate
ŀ	LFRC117	128.0	129.0	1	Chalcopyrite	1	Trace Disseminated			_
ļ	LFRC117	129.0	130.0	1	Chalcopyrite	1	Trace Disseminated	Pyrite	1	Trace Disseminate
	LFRC117	130.0	131.0	1	Chalcopyrite	3	Disseminated	Pyrite	1	Trace Disseminate
ļ	LFRC122	33.0	34.0	1	Chalcopyrite	2	Disseminated			
	LFRC122	34.0	35.0	1	Chalcopyrite	1	Disseminated	Pyrite	1	Disseminated
- [LFRC122	41.0	42.0	1	Chalcopyrite	2	Massive	Pyrite	1	Disseminated

Hole_ID	From (m)	To (m)	Int (m)	Sulphide 1	%	Style	Sulphide 2	%	Style
LFRC122	42.0	43.0	1	Chalcopyrite	1	Disseminated			
LFRC122	59.0	60.0	1	Chalcopyrite	3	Massive			
LFRC122	61.0	62.0	1	Pyrite	1	Disseminated	Chalcopyrite	1	Disseminated
LFRC122	84.0	85.0	1	Chalcopyrite	1	Disseminated			
LFRC122	86.0	89.0	3	Chalcopyrite	1	Disseminated			
LFRC122	89.0	90.0	1	Chalcopyrite	2	Stringer			
LFRC122	91.0	94.0	3	Chalcopyrite	1	Disseminated			
LFRC122	94.0	95.0	1	Chalcopyrite	2	Disseminated			
LFRC122	96.0	100.0	4	Chalcopyrite	1	Disseminated			
LFRC122	101.0	102.0	1	Chalcopyrite	1	Disseminated			
LFRC122	103.0	104.0	1	Chalcopyrite	2	Disseminated	Pyrite	1	Disseminated
LFRC122	104.0	105.0	1	Chalcopyrite	3	Disseminated			
LFRC122	105.0	106.0	1	Chalcopyrite	1	Disseminated			
LFRC122	108.0	109.0	1	Chalcopyrite	3	Massive			
LFRC122	109.0	110.0	1	Chalcopyrite	2	Massive			
LFRC122	110.0	111.0	1	Chalcopyrite	1	Massive			
LFRC122	112.0	114.0	2	Chalcopyrite	1	Disseminated			
LFRC122	118.0	119.0	1	Pyrite	1	Disseminated	Chalcopyrite	1	Disseminated
LFRC122	119.0	120.0	1	Chalcopyrite	2	Disseminated			
LFRC122	120.0	121.0	1	Chalcopyrite	1	Disseminated			
LFRC122	121.0	122.0	1	Chalcopyrite	1	Disseminated			
LFRC122	136.0	137.0	1	Chalcopyrite	2	Massive			
LFRC122	139.0	140.0	1	Chalcopyrite	1	Disseminated	Pyrite	1	Disseminated
LFRC122	152.0	153.0	1	Chalcopyrite	1	Disseminated	Tynte		Disseminated
LFRC122 LFRC123	28.0	30.0	2		1		Chalconvrite	1	Stringer
LFRC123	30.0	31.0	1	Pyrite	1	Stringer Stringer	Chalcopyrite Chalcopyrite	1	Stringer Stringer
				Pyrite			12		2
LFRC123	31.0	32.0	1	Pyrite	1	Stringer	Chalcopyrite	1	Stringer
LFRC123	32.0	34.0	2	Pyrite	1	D:	Chalcopyrite	1	D:
LFRC123	43.0	44.0	1	Pyrite	1	Disseminated	Chalcopyrite	1	Disseminated
LFRC123	44.0	45.0	1	Pyrite	1	Breccia Filled	Chalcopyrite	1	Disseminated
LFRC123	45.0	46.0	1	Pyrite	1	Breccia Filled	Chalcopyrite	1	Disseminated
LFRC123	46.0	48.0	2	Pyrite	1	Disseminated	Chalcopyrite	1	Patchy
LFRC123	53.0	54.0	1	Pyrite	1	Disseminated	Chalcopyrite	1	Disseminated
LFRC123	55.0	57.0	2	Pyrite	1	Disseminated	Chalcopyrite	1	Breccia Filled
LFRC123	66.0	68.0	2	Pyrite	1	Disseminated	Chalcopyrite		
LFRC123	68.0	69.0	1	Pyrite	2	Disseminated	Chalcopyrite	3	Breccia Filled
LFRC123	69.0	71.0	2	Pyrite	2	Breccia Filled	Chalcopyrite	2	Breccia Filled
LFRC123	71.0	73.0	2	Pyrite	1	Breccia Filled	Chalcopyrite	1	Breccia Filled
LFRC123	73.0	74.0	1	Pyrite	2	Breccia Filled	Chalcopyrite	2	Breccia Filled
LFRC123	74.0	77.0	3	Pyrite	2	Breccia Filled	Chalcopyrite	4	Breccia Filled
LFRC123	77.0	80.0	3	Pyrite	1	Breccia Filled	Chalcopyrite	3	Breccia Filled
LFRC123	80.0	85.0	5	Pyrite	1	Breccia Filled	Chalcopyrite	3	Breccia Filled
LFRC123	85.0	87.0	2	Pyrite	1	Breccia Filled	Chalcopyrite	1	Breccia Filled
LFRC123	87.0	88.0	1	Pyrite	1	Breccia Filled	Chalcopyrite	1	Breccia Filled
LFRC123	88.0	90.0	2	Pyrite	1	Breccia Filled	Chalcopyrite	1	Disseminated
LFRC123	90.0	91.0	1	Pyrite	1	Breccia Filled	Chalcopyrite	3	Stringer
LFRC123	91.0	93.0	2	Pyrite	1	Disseminated	Chalcopyrite	1	Disseminated
LFRC123	93.0	94.0	1	Pyrite	1	Disseminated	Chalcopyrite	2	Breccia Filled
LFRC123	94.0	95.0	1	Pyrite	1	Disseminated	Chalcopyrite	1	Disseminated
LFRC123	95.0	96.0	1	Pyrite	1	Disseminated	Chalcopyrite	1	Disseminated
LFRC123	96.0	97.0	1	Pyrite	1	Disseminated	Chalcopyrite	1	Disseminated
LFRC123	97.0	98.0	1	Pyrite	1	Disseminated	Chalcopyrite	1	Disseminated
LFRC123	98.0	100.0	2	Pyrite	1	Disseminated	Chalcopyrite	2	Disseminated
LFRC123	100.0	101.0	1	Pyrite	2	Disseminated	Chalcopyrite	2	Disseminated
LFRC123	101.0	102.0	1	Pyrite	1	Disseminated	Chalcopyrite	1	Disseminated
LFRC123	119.0	120.0	1	Chalcopyrite	1	Breccia Filled			
LFRC123	120.0	120.0	1	Chalcopyrite	1	Disseminated			

	Hole_ID	From (m)	To (m)	Int (m)	Sulphide 1	%	Style	Sulphide 2	%	Style
	LFRC123	121.0	122.0	1	Chalcopyrite	1	Stringer			
1	LFRC127	60	61	1	Chalcopyrite	1	Disseminated	Pyrite	1	Disseminated
	LFRC127	62	64	2	Pyrite	1	Patchy	Chalcopyrite	1	Patchy
	LFRC127	68	71	3	Pyrite	1	Disseminated	Chalcopyrite	1	Disseminated
	LFRC127	71	72	1	Pyrite	7	Breccia Filled	Chalcopyrite	3	Breccia Filled
	LFRC127	72	73	1	Pyrite	2	Breccia Filled	Chalcopyrite	2	Breccia Filled
ſ	LFRC127	73	78	5	Pyrite	1	Disseminated	Chalcopyrite	1	Disseminated
	LFRC127	78	79	1	Pyrite	4	Breccia Filled	Chalcopyrite	4	Breccia Filled
	LFRC127	79	80	1	Pyrite	1	Breccia Filled	Chalcopyrite	1	Breccia Filled
	LFRC127	83	84	1	Pyrite	1	Stringer	Chalcopyrite	1	Stringer
	LFRC127	89	90	1	Chalcopyrite	1	Stringer	Pyrite	1	Stringer
1	LFRC127	90	91	1	Chalcopyrite	1	Disseminated	Pyrite	1	Disseminated
ľ	LFRC127	91	92	1	Chalcopyrite	1	Stringer	Pyrite	1	Stringer
ľ	LFRC127	92	93	1	Chalcopyrite	1	Disseminated	Pyrite	1	Disseminated
1	LFRC127	114	115	1	Pyrite	1	Breccia Filled	Chalcopyrite	2	Breccia Filled
/	LFRC127	115	116	1	Pyrite	1	Disseminated	Chalcopyrite	1	Disseminated
ŀ	LFRC127	116	117	1	Pyrite	2	Disseminated	Chalcopyrite	1	Disseminated
	LFRC127	117	118	1	Pyrite	1	Disseminated	Chalcopyrite	1	Disseminated
ł	LFRC127	117	119	1	Pyrite	1	Disseminated	Chalcopyrite	1	Disseminated
ŀ	LFRC127 LFRC127	110	119	1	Pyrite	1	Disseminated	Chalcopyrite	2	Disseminated
-	LFRC127 LFRC127	162	163	1	Pyrite	1	Breccia Filled	Chalcopyrite	1	Breccia Filled
ŀ	LFRC127 LFRC127	176	178	2	,	1		Chalcopyrite	I	Dieccia Filieu
		178	178	1	Chalcopyrite		Breccia Filled			
	LFRC127			1	Chalcopyrite	1	Breccia Filled	D it	0	D
J	LFRC127	179	180	1	Chalcopyrite	3	Breccia Filled	Pyrite	8	Breccia Filled
-	LFRC127	180	182	2	Chalcopyrite	1	Breccia Filled	Pyrite	1	Breccia Filled
ŀ	LFRC127	188	189	1	Chalcopyrite	1	Breccia Filled			
	LFRC127	197	200	3	Chalcopyrite	1	Patchy			
	LFRC127	200	202	2	Chalcopyrite	1	Patchy			
L	LFRC127	202	203	1	Chalcopyrite	1	Breccia Filled			
l	LFRC127	203	204	1	Chalcopyrite	4	Breccia Filled	Pyrite	1	Breccia Filled
1	LFRC127	204	205	1	Chalcopyrite	2	Breccia Filled	Pyrite	1	Breccia Filled
/	LFRC127	205	206	1	Chalcopyrite	5	Breccia Filled	Pyrite	3	Breccia Filled
	LFRC127	206	207	1	Chalcopyrite	3	Breccia Filled	Pyrite	1	Breccia Filled
	LFRC127	207	208	1	Chalcopyrite	1	Breccia Filled	Pyrite	1	Disseminated
1	LFRC127	208	209	1	Chalcopyrite	2	Disseminated	Pyrite	1	Disseminated
	LFRC127	209	210	1	Chalcopyrite	1	Stringer	Pyrite	1	Stringer
ų	LFRC127	210	211	1	Chalcopyrite	1	Stringer			
	LFRC127	211	212	1	Chalcopyrite	1	Disseminated	Pyrite	1	Disseminated
	LFRC127	212	214	2	Chalcopyrite	2	Breccia Filled	Pyrite	1	Disseminated
ľ	LFRC127	214	215	1	Chalcopyrite	1	Stringer	Pyrite	1	Stringer
	LFRC127	215	216	1	Chalcopyrite	3	Breccia Filled	Pyrite	1	Breccia Filled
ţ	LFRC127	216	217	1	Chalcopyrite	1	Breccia Filled	Pyrite	1	Breccia Filled
ŀ	LFRC127	224	225	1	Chalcopyrite	1	Disseminated			
ŀ	LFRC127	225	226	1	Chalcopyrite	2	Breccia Filled	Pyrite	2	Breccia Filled
ţ	LFRC127	226	227	1	Chalcopyrite	1	Stringer	Pyrite	1	Stringer
ŀ	LFRC127	228	229	1	Chalcopyrite	1	Stringer			2
ţ	LFRC129	65	66	1	Chalcopyrite	1	2			
ŀ	LFRC129	69	70	1	Chalcopyrite	2		Pyrite	5	
ŀ	LFRC129	71	72	1	Chalcopyrite	2		Pyrite	3	
ŀ	LFRC129	72	73	1	Chalcopyrite	2		Pyrite	2	
ŀ	LFRC129 LFRC129	72	73	1	Chalcopyrite	6		Pyrite	3	
ŀ	LFRC129 LFRC129	73	74	1		6			3	
╞					Chalcopyrite			Pyrite		
ŀ	LFRC129	75	76	1	Chalcopyrite	2		Pyrite	5	
-	LFRC129	76	77	1	Chalcopyrite	6		Pyrite	2	
-	LFRC129	77	78	1	Chalcopyrite	6		Pyrite	5	
	LFRC129	78	79	1	Chalcopyrite	12		Pyrite	2	
1	LFRC129	79	80	1	Chalcopyrite	15		Pyrite	2	

	Hole_ID	From (m)	To (m)	Int (m)	Sulphide 1	%	Style	Sulphide 2	%	Style
	LFRC129	80	81	1	Chalcopyrite	15		Pyrite	2	
	LFRC129	81	82	1	Chalcopyrite	2		Pyrite	1	
	LFRC129	82	83	1	Chalcopyrite	15		Pyrite	5	
	LFRC129	83	84	1	Chalcopyrite	1		Pyrite	1	
	LFRC129	84	85	1	Chalcopyrite	3		Pyrite	1	
	LFRC129	85	86	1	Chalcopyrite	12		Pyrite	2	
	LFRC129	86	87	1	Chalcopyrite	2		Pyrite	5	
	LFRC129	87	88	1	Chalcopyrite	6		Pyrite	2	
	LFRC129	88	89	1	Chalcopyrite	3		Pyrite	3	
	LFRC129	89	90	1	Chalcopyrite	6		Pyrite	5	
Ī	LFRC129	90	91	1	Chalcopyrite	10		Pyrite	10	
	LFRC129	91	92	1	Chalcopyrite	15		Pyrite	5	
ľ	LFRC129	92	93	1	Chalcopyrite	6		Pyrite	15	
_	LFRC129	93	94	1	Chalcopyrite	15		Pyrite	5	
1	LFRC129	94	95	1	Chalcopyrite	10		Pyrite	5	
	LFRC129	95	96	1	Chalcopyrite	3		Pyrite	15	
1	LFRC129	96	97	1	Chalcopyrite	2		Pyrite	15	
	LFDD126	29	30	1	Pyrite	1	Disseminated	Chalcopyrite	1	Patchy
ł	LFDD126	40	42	2	Pyrite	1	Stringer	Chalcopyrite	1	Stringer
ł	LFDD126 LFDD126	40	42	1	Pyrite	1	Stringer	Chalcopyrite	2	Breccia Filled
ł							J	12		
ŀ	LFDD126	43	44	1	Pyrite	1	Stringer	Chalcopyrite	1	Stringer
	LFDD126	44	50	6	Pyrite	1	Stringer	Chalcopyrite	1	Stringer
	LFDD126	69	70	1	Pyrite	1	Patchy	Chalcopyrite	1	Patchy
V	LFDD126	69.4	84.6	15.2	Chalcopyrite	0.1	Disseminated	Pyrite	0.1	Disseminated
-	LFDD126	84.6	87.95	3.35	Chalcopyrite	1	Disseminated	Pyrite	0.5	Disseminated
ļ	LFDD126	87.95	88.6	0.65	Chalcopyrite	9	Disseminated	Pyrite	1	Disseminated
	LFDD126	88.6	91	2.4	Chalcopyrite	0.5	Disseminated	Pyrite	1.5	Disseminated
	LFDD126	91	91.9	0.9	Chalcopyrite	3	Disseminated	Pyrite	1	Disseminated
	LFDD126	91.9	94	2.1	Chalcopyrite	0.2	Disseminated	Pyrite	0.1	Disseminated
	LFDD126	94	98.35	4.35	Chalcopyrite	1	Disseminated	Pyrite	1	Disseminated
1	LFDD126	98.35	100.3	1.95	Chalcopyrite	2	Disseminated	Pyrrhotite	0.5	Disseminated
	LFDD126	100.3	107.4	7.1	Chalcopyrite	0.5	Disseminated	Pyrite	0.5	Disseminated
	LFDD126	107.4	109.9	2.5	Chalcopyrite	0.2	Disseminated	Pyrite	0.2	Disseminated
-	LFDD126	109.9	111	1.1	Chalcopyrite	1	Disseminated	Pyrite	0.5	Disseminated
	LFDD126	111	114	3	Chalcopyrite	5	Disseminated	Pyrite	1	Disseminated
Ī	LFDD126	114	119.3	5.3	Chalcopyrite	9	Disseminated	Pyrite	2	Disseminated
	LFDD126	119.3	120.5	1.2	Chalcopyrite	1	Disseminated	Pyrite	0.2	Disseminated
	LFDD126	120.5	127.1	6.6	Chalcopyrite	0.5	Disseminated	Pyrrhotite	1	Disseminated
Ĩ	LFDD126	127.1	128.4	1.3	Chalcopyrite	5	Disseminated	Pyrite	0.5	Disseminated
_	LFDD126	128.4	131.15	2.75	Chalcopyrite	0.2	Disseminated	Pyrite	0.1	Disseminated
ľ	LFDD126	131.15	131.4	0.25	Chalcopyrite	6	Disseminated	Pyrrhotite	2	Disseminated
ŀ	LFDD126	131.4	136.9	5.5	Chalcopyrite	0.1	Disseminated	Pyrite	0.1	Disseminated
-	LFDD126	136.9	139.1	2.2	Chalcopyrite	5	Disseminated	Pyrrhotite	2	Disseminated
ł	LFDD126	130.9	142.1	3	Chalcopyrite	0.2	Disseminated	Pyrrhotite	0.1	Disseminated
ł	LFDD126	142.1	142.1	0.6	Chalcopyrite	15	Disseminated	Pyrite	10	Disseminated
-	LFDD126	142.1	142.7	3.8	Chalcopyrite		Disseminated			
ł						0.1		Pyrite	0.1	Disseminated
ŀ	LFDD126	146.5	152.7	6.2	Chalcopyrite	2	Disseminated	Pyrite	2	Disseminated
ŀ	LFDD126	152.7	160.9	8.2	Chalcopyrite	0.1	Disseminated	Pyrite	0.1	Disseminated
ŀ	LFDD126	160.9	161.9	1	Chalcopyrite	1	Disseminated	Pyrite	0.5	Disseminated
ŀ	LFDD126	244.2	246	1.8	Chalcopyrite	1	Disseminated	Pyrite	2	Disseminated
ļ	LFDD126	246	281.8	35.8	Chalcopyrite	0.1	Disseminated	Pyrite	0.1	Disseminated
ļ	LFDD126	281.8	283.8	2	Chalcopyrite	1	Disseminated	Pyrite	1	Disseminated
ļ	LFDD128	68	69	1	Chalcopyrite	4	Breccia Filled	Pyrite	1	Breccia Filled
ļ	LFDD128	69	70	1	Chalcopyrite	4	Breccia Filled	Pyrite	1	Breccia Filled
l	LFDD128	70	71	1	Chalcopyrite	5	Breccia Filled	Pyrite	2	Breccia Filled
l	LFDD128	71	72	1	Chalcopyrite	2	Massive	Pyrite	3	Massive
ſ	LFDD128	104	106	2	Pyrite	1	Disseminated	Chalcopyrite	1	Disseminated

Hole_ID	From (m)	To (m)	Int (m)	Sulphide 1	%	Style	Sulphide 2	%	Style
LFDD128	106	107	1	Pyrite	1	Disseminated	Chalcopyrite	1	Disseminated
LFDD128	127	129	2	Pyrite	1	Disseminated	Chalcopyrite	1	Patchy
LFDD128	129	130	1	Pyrite	1	Disseminated	Chalcopyrite	1	Disseminated

NIL DESPERANDUM PROSPECT (CNB 82.5%, DCX 17.5%)

	Hole_ID	From (m)	To (m)	Int (m)	Sulphide 1	%	Style	Sulphide 2	%	Style
	NLRC048	22	23	1	Pyrite	1	Disseminated	Chalcopyrite	1	Stringer
-	NLRC048	61	62	1	Pyrite	1	Stringer	Chalcopyrite	1	Stringer
1	NLRC048	65	66	1	Pyrite	1	Disseminated	Chalcopyrite	1	Disseminated
ΙF	NLRC048	111	114	3	Pyrite	1	Disseminated	Chalcopyrite	1	Disseminated
T	NLRC048	114	115	1	Pyrite	1	Disseminated	Chalcopyrite	1	Breccia Filled
/7	NLRC048	115	118	3	Pyrite	1	Disseminated	Chalcopyrite	1	Stringer
	NLRC048	118	120	2	Pyrite	1	Disseminated	Chalcopyrite	1	Breccia Filled
	NLRC048	120	121	1	Pyrite	1	Disseminated	Chalcopyrite	2	Breccia Filled
	NLRC048	121	122	1	Pyrite	1	Disseminated	Chalcopyrite	1	Stringer
	NLRC048	122	123	1	Pyrite	1	Disseminated	Chalcopyrite	1	Stringer
	NLRC048	123	124	1	Pyrite	1	Disseminated	Chalcopyrite	1	Disseminated
	NLRC048	124	125	1	Pyrite	1	Disseminated	Chalcopyrite	1	Breccia Filled
	NLRC048	125	126	1	Pyrite	2	Breccia Filled	Chalcopyrite	7	Breccia Filled
١Ē	NLRC048	126	127	1	Pyrite	1	Breccia Filled	Chalcopyrite	3	Breccia Filled
1	NLRC048	127	128	1	Pyrite	1	Breccia Filled	Chalcopyrite	1	Breccia Filled
	NLRC048	128	129	1	Pyrite	1	Breccia Filled	Chalcopyrite	2	Stringer
	NLRC048	129	130	1	Pyrite	1	Breccia Filled	Chalcopyrite	2	Breccia Filled
	NLRC048	130	131	1	Pyrite	1	Disseminated	Chalcopyrite	1	Disseminated
	NLRC048	131	132	1	Pyrite	1	Disseminated	Chalcopyrite	1	Disseminated
	NLRC048	132	133	1	Pyrite	1	Disseminated	Chalcopyrite	2	Breccia Filled
	NLRC048	133	137	4	Pyrite	1	Disseminated	Chalcopyrite	1	Disseminated
K	NLRC048	137	138	1	Pyrite	1	Stringer	Chalcopyrite	1	Stringer
ľ	NLRC048	138	140	2	Pyrite	1	Disseminated	Chalcopyrite	1	Disseminated
	NLRC048	142	144	2	Pyrite	1	Trace Disseminated	Chalcopyrite	1	Trace Disseminated
	NLRC048	144	145	1	Pyrite	1	Disseminated	Chalcopyrite	1	Breccia Filled
ſ	NLRC048	145	152	7	Pyrite	1	Disseminated	Chalcopyrite	1	Disseminated
F	NLRC048	152	153	1	Pyrite	1	Disseminated	Chalcopyrite	1	Disseminated
E	NLRC048	153	154	1	Pyrite	2	Breccia Filled	Chalcopyrite	1	Disseminated
	NLRC048	154	155	1	Pyrite	12	Breccia Filled	Chalcopyrite	8	Breccia Filled
	NLRC048	155	156	1	Pyrite	4	Breccia Filled	Chalcopyrite	4	Breccia Filled
	NLRC048	156	157	1	Pyrite	1	Disseminated	Chalcopyrite	1	Disseminated
	NLRC048	157	159	2	Pyrite	1	Disseminated	Chalcopyrite	1	Disseminated
	NLRC048	159	160	1	Pyrite	1	Stringer	Chalcopyrite	3	Stringer
	NLRC048	160	161	1	Pyrite	1	Stringer	Chalcopyrite	1	Stringer
-	NLRC048	162	163	1	Pyrite	2	Breccia Filled	Chalcopyrite	2	Breccia Filled
	NLRC048	163	164	1	Pyrite	1	Disseminated	Chalcopyrite	2	Breccia Filled
	NLRC048	164	167	3	Pyrite	1	Disseminated	Chalcopyrite	1	Disseminated
I T	NLRC048	167	168	1	Pyrite	1	Stringer	Chalcopyrite	1	Stringer
	NLRC048	168	169	1	Pyrite	1	Disseminated	Chalcopyrite	3	Breccia Filled
	NLRC048	169	170	1	Pyrite	1	Disseminated	Chalcopyrite	1	Disseminated
	NLRC048	170	171	1	Pyrite	1	Stringer	Chalcopyrite	2	Stringer
	NLRC048	171	172	1	Pyrite	1	Disseminated	Chalcopyrite	2	Breccia Filled
F	NLRC048	172	173	1	Pyrite	1	Disseminated	Chalcopyrite	2	Breccia Filled
F	NLRC048	173	174	1	Pyrite	3	Breccia Filled	Chalcopyrite	7	Breccia Filled
F	NLRC048	174	175	1	Pyrite	1	Disseminated	Chalcopyrite	2	Breccia Filled
F	NLRC048	175	176	1	Pyrite	2	Breccia Filled	Chalcopyrite	7	Breccia Filled
F	NLRC048	176	177	1	Pyrite	3	Breccia Filled	Chalcopyrite	2	Breccia Filled
F	NLRC048	177	178	1	Pyrite	1	Disseminated	Chalcopyrite	1	Disseminated

	Hole_ID	From (m)	To (m)	Int (m)	Sulphide 1	%	Style	Sulphide 2	%	Style
	NLRC048	178	179	1	Pyrite	1	Disseminated	Chalcopyrite	1	Stringer
	NLRC048	179	180	1	Pyrite	1	Stringer	Chalcopyrite	3	Stringer
	NLRC048	180	181	1	Pyrite	2	Breccia Filled	Chalcopyrite	1	Disseminated
	NLRC048	181	182	1	Pyrite	1	Breccia Filled	Chalcopyrite	4	Breccia Filled
	NLRC048	182	183	1	Pyrite	1	Stringer	Chalcopyrite	1	Stringer
	NLRC048	183	184	1	Pyrite	1	Stringer	Chalcopyrite	1	Stringer
	NLRC048	184	186	2	Pyrite	1	Stringer	Chalcopyrite	1	Stringer
	NLRC048	186	187	1	Pyrite	1	Disseminated	Chalcopyrite	1	Disseminated
	NLRC048	187	188	1	Pyrite	2	Disseminated	Chalcopyrite	2	Disseminated
	NLRC048	188	189	1	Pyrite	2	Disseminated	Chalcopyrite	2	Disseminated
	NLRC048	189	190	1	Pyrite	2	Disseminated	Chalcopyrite	2	Disseminated
	NLRC048	190	191	1	Pyrite	1	Disseminated	Chalcopyrite	1	Breccia Filled
	NLRC048	191	192	1	Pyrite	1	Disseminated	Chalcopyrite	2	Breccia Filled
	NLRC048	192	194	2	Pyrite	1	Disseminated	Chalcopyrite	1	Breccia Filled
	NLRC048	194	195	1	Pyrite	1	Disseminated	Chalcopyrite	1	Patchy
	NLRC048	195	196	1	Pyrite	1	Breccia Filled	Chalcopyrite	1	Breccia Filled
	NLRC048	196	197	1	Pyrite	1	Disseminated	Chalcopyrite	1	Stringer
	NLRC048	197	198	1	Pyrite	1	Breccia Filled	Chalcopyrite	2	Breccia Filled
	NLRC048	198	199	1	Pyrite	1	Disseminated	Chalcopyrite	1	Stringer
	NLRC048	199	200	1	Pyrite	1	Disseminated	Chalcopyrite	3	Disseminated
	NLRC048	200	202	2	Pyrite	1	Breccia Filled	Chalcopyrite	3	Breccia Filled
	NLRC048	202	205	3	Pyrite	1	Disseminated	Chalcopyrite	1	Disseminated
	NLRC048	205	206	1	Pyrite	1	Disseminated	Chalcopyrite	1	Disseminated
	NLRC048	206	207	1	Pyrite	1	Disseminated	Chalcopyrite	2	Stringer
	NLRC048	207	208	1	Pyrite	1	Disseminated	Chalcopyrite	2	Breccia Filled
	NLRC048	208	209	1	Pyrite	2	Breccia Filled	Chalcopyrite	6	Breccia Filled
	NLRC048	209	210	1	Pyrite	1	Disseminated	Chalcopyrite	1	Stringer
	NLRC048	210	211	1	Pyrite	1	Disseminated	Chalcopyrite	1	Breccia Filled
	NLRC048	210	212	1	Pyrite	1	Breccia Filled	Chalcopyrite	4	Breccia Filled
	NLRC048	212	213	1	Pyrite	2	Breccia Filled	Chalcopyrite	6	Breccia Filled
	NLRC048	212	214	1	Pyrite	2	Breccia Filled	Chalcopyrite	4	Breccia Filled
	NLRC048	213	215	1	Pyrite	1	Stringer	Chalcopyrite	1	Stringer
	NLRC048	215	216	1	Pyrite	2	Breccia Filled	Chalcopyrite	2	Breccia Filled
	NLRC048	216	217	1	Pyrite	2	Breccia Filled	Chalcopyrite	5	Breccia Filled
	NLRC048	210	218	1	Pyrite	2	Breccia Filled	Chalcopyrite	7	Breccia Filled
	NLRC048	218	219	1	Pyrite	2	Breccia Filled	Chalcopyrite	5	Breccia Filled
	NLRC048	219	220	1	Pyrite	1	Breccia Filled	Chalcopyrite	3	Breccia Filled
	NLRC048	220	221	1	Pyrite	2	Breccia Filled	Chalcopyrite	8	Breccia Filled
	NLRC048	221	222	1	Pyrite	1	Breccia Filled	Chalcopyrite	2	Breccia Filled
	NLRC048	222	223	1	Pyrite	1	Breccia Filled	Chalcopyrite	2	Stringer
	NLRC048	223	224	1	Pyrite	1	Stringer	Chalcopyrite	1	Stringer
	NLRC048	227	224	1	Pyrite	1	Disseminated	Chalcopyrite	1	Breccia Filled
C	NLRC048	230	231	1	Pyrite	2	Breccia Filled	Chalcopyrite	2	Breccia Filled
	NLRC048	230	232	1	Pyrite	4	Breccia Filled	Chalcopyrite	70	Massive
	NLRC048	232	233	1	Pyrite	5	Breccia Filled	Chalcopyrite	45	Breccia Filled
	NLRC048	233	234	1	Pyrite	6	Breccia Filled	Chalcopyrite	30	Breccia Filled
	NLRC048	233	235	1	Pyrite	1	Breccia Filled	Chalcopyrite	2	Breccia Filled
	NLRC048	234	235	2	Pyrite	1	Disseminated	Chalcopyrite	1	Disseminated
	NLRC048	233	237	1	Pyrite	1	Disseminated	Chalcopyrite	1	Massive
	NLRC040	237	230	1	Pyrite	1	Breccia Filled	Chalcopyrite	1	Breccia Filled
	NLRC050	185	186	1	Pyrite	2	Disseminated	Chalcopyrite	2	Disseminated
	NLRC050	185	187	1	Pyrite	1	Disseminated	Chalcopyrite	1	Disseminated
	NLRC050	100	107			2	Breccia Filled			Massive
	NLRC050	216	217	1	Pyrite Chalcopyrite	6	Breccia Filled	Chalcopyrite	1	Breccia Filled
	NLRC050	216	217	1	17	2	Breccia Filled	Pyrite Pyrite	4	Breccia Filled
				1	Chalcopyrite					
	NLRC050 NLRC050	218 219	219 220	1	Chalcopyrite	2	Massive Breccia Filled	Pyrite	6 5	Massive Breccia Filled
	INLIGUOU	219	220		Chalcopyrite	2	DIECCIA FILIEU	Pyrite	5	Dieccia Filleu

	Hole_ID	From (m)	To (m)	Int (m)	Sulphide 1	%	Style	Sulphide 2	%	Style
_	NLRC050	223	224	1	Pyrite	6	Breccia Filled	Chalcopyrite	2	Breccia Filled
	NLRC050	224	225	1	Pyrite	1	Breccia Filled	Chalcopyrite	1	Breccia Filled
1	NLRC050	225	226	1	Pyrite	2	Breccia Filled	Chalcopyrite	1	Breccia Filled
	NLRC050	226	227	1	Pyrite	1	Breccia Filled	Chalcopyrite	1	Breccia Filled
	NLRC050	227	228	1	Pyrite	2	Breccia Filled	Chalcopyrite	1	Breccia Filled
	NLRC050	228	231	3	Pyrite	1	Massive	Chalcopyrite	1	Massive
	NLRC050	231	232	1	Pyrite	70	Massive	Chalcopyrite	2	Breccia Filled
-	NLRC050	240	241	1	Pyrite	1	Disseminated	Chalcopyrite	1	Disseminated
	NLRC050	241	243	2	Pyrite	1	Disseminated	Chalcopyrite	1	Disseminated
_	NLRC050	243	244	1	Pyrite	1	Disseminated	Chalcopyrite	1	Disseminated
	NLRC050	263	264	1	Pyrite	1	Breccia Filled	Chalcopyrite	1	Breccia Filled
-	NLRC050	264	266	2	Pyrite	3	Breccia Filled	Chalcopyrite	1	Breccia Filled
	NLRC050	266	267	1	Pyrite	1	Breccia Filled	Chalcopyrite	1	Breccia Filled
1	NLRC057	44	45	1	Pyrite	1	Patchy	Chalcopyrite	1	Patchy
	NLRC057	98	99	1	Pyrite	1	Disseminated	Chalcopyrite	1	Patchy
/	NLRC057	104	105	1	Pyrite	1	Stringer	Chalcopyrite	1	Stringer
2	NLRC057	108	109	1	Pyrite	1	Patchy	Chalcopyrite	1	Patchy
	NLRC057	110	111	1	Pyrite	1	Patchy	Chalcopyrite	1	Patchy
_	NLRC057	114	115	1	Chalcopyrite	1	Disseminated	Pyrite	1	Disseminated
	NLRC057	115	116	1	Chalcopyrite	1	Disseminated	Pyrite	1	Disseminated
	NLRC057	115	117	1	Chalcopyrite	1	Breccia Filled	Pyrite	1	Breccia Filled
	NLRC057	117	117	2	Chalcopyrite	1	Disseminated	Pyrite	1	Disseminated
_	NLRC057	117	119	1	Chalcopyrite	1	Disseminated	Pyrite	1	Disseminated
٦	NLRC057	120	120	1		-	Disseminated	,	1	Disseminated
	\sim				Chalcopyrite	1		Pyrite	-	
_	NLRC057	130	131	1	Pyrite	1	Disseminated	Chalcopyrite	1	Breccia Filled
	NLRC057	131	132	1	Pyrite	1	Disseminated	Chalcopyrite	1	Disseminated
-	NLRC057	132	133	1	Pyrite	1	Stringer	Chalcopyrite	2	Stringer
-	NLRC057	133	135	2	Pyrite	1	Disseminated	Chalcopyrite	1	Disseminated
	NLRC057	135	137	2	Pyrite	1	Disseminated	Chalcopyrite	1	Disseminated
	NLRC057	137	139	2	Pyrite	1	Stringer	Chalcopyrite	1	Stringer
/	NLRC057	139	140	1	Pyrite	2	Patchy	Chalcopyrite	3	Patchy
$\left \right $	NLRC057	140	141	1	Pyrite	2	Disseminated	Chalcopyrite	1	Disseminated
_	ENLRC057	143	146	3	Pyrite	1	Stringer	Chalcopyrite	2	Stringer
-	NLRC057	146	147	1	Pyrite	1	Stringer	Chalcopyrite	2	Stringer
_	NLRC057	147	150	3	Pyrite	1	Disseminated	Chalcopyrite	1	Disseminated
1	NLRC057	150	151	1	Pyrite	2	Breccia Filled	Chalcopyrite	1	Breccia Filled
4	NLRC057	151	152	1	Pyrite	3	Breccia Filled	Chalcopyrite	2	Breccia Filled
	NLRC057	152	153	1	Pyrite	3	Breccia Filled	Chalcopyrite	2	Breccia Filled
	NLRC057	153	154	1	Pyrite	1	Breccia Filled	Chalcopyrite	3	Breccia Filled
-	NLRC057	154	155	1	Pyrite	1	Trace Disseminated	Chalcopyrite	1	Trace Disseminated
	NLRC057	155	158	3	Pyrite	1	Breccia Filled	Chalcopyrite	2	Breccia Filled
	NLRC057	158	159	1	Pyrite	1	Disseminated	Chalcopyrite	1	Disseminated
	NLRC057	159	160	1	Pyrite	2	Massive	Chalcopyrite	2	Massive
	NLRC057	160	161	1	Pyrite	1	Disseminated	Chalcopyrite	1	Disseminated
	NLRC057	161	162	1	Pyrite	2	Breccia Filled	Chalcopyrite	2	Breccia Filled
_	NLRC057	162	163	1	Pyrite	1	Breccia Filled	Chalcopyrite	2	Breccia Filled
	NLRC057	163	164	1	Pyrite	2	Breccia Filled	Chalcopyrite	6	Breccia Filled
	NLRC057	164	165	1	Pyrite	1	Disseminated	Chalcopyrite	1	Disseminated
Ц	NLRC057	165	166	1	Pyrite	1	Disseminated	Chalcopyrite	1	Disseminated
	NLRC057	166	167	1	Pyrite	10	Breccia Filled	Chalcopyrite	2	Breccia Filled
	NLRC057	167	168	1	Pyrite	6	Breccia Filled	Chalcopyrite	2	Breccia Filled
	NLRC057	168	169	1	Pyrite	1	Disseminated	Chalcopyrite	1	Disseminated
	NLRC057	169	170	1	Pyrite	2	Breccia Filled	Chalcopyrite	1	Disseminated
	NLDD078	17	18	1	Chalcopyrite	3	Trace Disseminated	Pyrite	1	Trace Disseminated
	NLDD078	18	19	1	Chalcopyrite	1	Trace Disseminated	Pyrite	2	Trace Disseminated
	NLDD078	75	76	1	Chalcopyrite	1	Trace Disseminated	,		
	NLDD078	300.4	321	20.6	Pyrite	0.2	Disseminated	Chalcopyrite	0.1	Disseminated

Hole_ID	From (m)	To (m)	Int (m)	Sulphide 1	%	Style	Sulphide 2	%	Style
NLDD078	344.4	355	10.6	Chalcopyrite	0.5	Disseminated	Pyrite	0.5	Disseminated
NLDD078	407.25	408.55	1.3	Chalcopyrite	1	Disseminated	Pyrite	2	Disseminated
NLDD078	408.55	408.9	0.35	Chalcopyrite	15	Disseminated	Pyrite	10	Massive
NLDD078	408.9	410.1	1.2	Chalcopyrite	2	Disseminated	Pyrite	2	Disseminated
NLDD078	435.95	437.5	1.55	Chalcopyrite	0.5	Disseminated	Pyrite	5	Disseminated
NLDD078	468.9	469.3	0.4	Chalcopyrite	0.5	Disseminated	Pyrite	0.1	Disseminated
NLDD078	481.5	482.4	0.9	Chalcopyrite	1	Disseminated	Pyrite	0.5	Disseminated
NLDD078	482.4	484	1.6	Chalcopyrite	0.5	Selvage	Pyrite	0.5	Disseminated
NLDD078	484	498.3	14.3	Chalcopyrite	0.1	Disseminated	Pyrite	0.1	
NLDD078	498.3	498.4	0.1	Chalcopyrite	30	Massive	Pyrite	2	Disseminated
NLDD078	498.4	506.1	7.7	Chalcopyrite	0.1	Disseminated	Pyrite	0.1	Disseminated
NLDD081	315.6	317.45	1.85	Chalcopyrite	1	Disseminated			
NLDD081	320.3	320.35	0.05	Chalcopyrite	3	Blebby			
NLDD081	321.75	321.85	0.1	Chalcopyrite	2	Breccia Filled	Pyrite	1	Breccia Filled
NLDD081	322	322.3	0.3	Chalcopyrite	12	Massive	Pyrite	3	Massive
NLDD081	322.3	324.95	2.65	Chalcopyrite	2	Disseminated			
NLDD081	365.05	365.12	0.07	Chalcopyrite	3	Massive			
NLDD081	401.4	401.45	0.05	Chalcopyrite	1	Disseminated	Pyrite	1	Disseminated
NLDD087	322.05	322.1	0.05	Chalcopyrite	2	Breccia Filled	Pyrite	2	Breccia Filled
NLDD087	337	339	2	Chalcopyrite	0.2	Disseminated	Pyrite	0.2	Disseminated
NLDD087	339	339.7	0.7	Pyrite	15	Breccia Filled	Chalcopyrite	1	Breccia Filled
NLDD087	339.7	341.2	1.5	Chalcopyrite	4	Breccia Filled	Pyrite	2	Breccia Filled
NLDD087	362	363.9	1.9	Pyrite	3	Breccia Filled	Chalcopyrite	0.2	Breccia Filled
NLDD087	453.9	455.2	1.3	Pyrite	3	Breccia Filled	Chalcopyrite	0.1	Breccia Filled
NLDD087	455.2	456	0.8	Chalcopyrite	5	Breccia Filled	Pyrite	2	Breccia Filled
NLDD087	459.1	462	2.9	Pyrite	1	Disseminated	Chalcopyrite	0.2	Disseminated
NLDD087	470.3	473.8	3.5	Pyrite	1	Disseminated	Chalcopyrite	0.1	Disseminated
NLDD087	473.8	474.7	0.9	Chalcopyrite	3	Breccia Filled	Pyrite	2	Breccia Filled
NLDD087	476.4	479	2.6	Pyrite	3	Disseminated	Chalcopyrite	1	Disseminated
NLDD087	570.3	571.1	0.8	Chalcopyrite	3	Massive	Pyrite	1	Massive
NLDD090	325.8	337.5	11.7	Chalcopyrite	0.1	Disseminated	Pyrite	0.5	Disseminated
NLDD090	357	357.3	0.3	Chalcopyrite	1	Disseminated	Pyrite	5	Disseminated
NLDD090	357.3	363.6	6.3	Chalcopyrite	0.1	Disseminated	Pyrite	0.2	Disseminated
NLDD090	363.6	364.1	0.5	Chalcopyrite	2	Disseminated	Pyrite	2	Disseminated

APPENDIX TWO

Section 1 Sampling Techniques and Data

		· · · · · · · · · · · · · · · · · · ·		1		
APPENDIX TWO JORC Code, 2012 Edition 'Table 1' Report						
Section 1 Sa	ampling Techniques	and Data				
(Criteria in th	nis section apply to a	ions)				
Criteria	JORC Code explanat	ion	Commentary			
Sampling techniques	 Nature and quality channels, random specialised industry s tools appropriate to investigation, such a sondes, or handheld These examples sho limiting the broad mea Include reference to ensure sample rep 	of sampling (eg cu chips, or specifi tandard measuremen the minerals unde s down hole gamm XRF instruments, etc uld not be taken a aning of sampling.	 Appendix 1. The RC drill chips were by suitably qualified a Sampling from diame intervals of varying le Core was half core sequence quarter core sampled intervals. 	e logged and vis nd experienced c nond core was ngth, mostly 1m ampled within th	ual abung geologist. from sel within th ne minera	dances estimated ected geological ne mineralisation. alised zones and

Criteria	JORC Code explanation	Commentary			
	 appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (eg 	 Recent RC samples were collected via a cone splitter mounted below the cyclone. A 2-3kg sample was collected from each 1m interval. 			
	'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (eg submarine nodules) may warrant disclosure of				
Drilling techniques	 detailed information. Drill type (eg core, reverse circulation, openhole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (eg core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc). 	 All recent RC holes were completed using a 5.5" face sampling bit. Diamond drilling was completed using NQ sized core after reentering a 300m deep RC pre-collar. 			
Drill sample recovery	 Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material. 	 For recent RC drilling, no significant recovery issues for samples were observed. Drill chips collected in chip trays are considered a reasonable visual representation of the entire sample interval. No significant core loss was observed from the recent diamond holes. 			
Logging	 Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography. The total length and percentage of the relevant intersections logged. 	 RC holes have been logged for lithology, weathering, mineralisation, veining, structure and alteration. Diamond core holes logged for lithology, weathering, mineralisation, veining, structure, alteration and RQD. Holes less than 85 degrees dip were orientated and measurements of the structures and mineralisation taken. All chips have been stored in chip trays on 1m intervals and logged in the field. 			
Sub-sampling techniques and sample preparation	 If core, whether cut or sawn and whether quarter, half or all core taken. If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry. For all sample types, the nature, quality and appropriateness of the sample preparation technique. Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples. Measures taken to ensure that the sampling is representative of the in-situ material collected, including for instance results for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of the material being sampled. 	 All RC samples are cone split at the cyclone to create a 1m sample of 2-3kg. The remaining sample is retained in a plastic bag at the drill site. For mineralised zones, the 1m cone split sample is taken for analysis. For non-mineralised zones a 5m composite spear sample is collected and the individual 1m cone split samples over the same interval retained for later analysis if positive results are returned. Core samples are half sawn on one side of the orientation line and core consistently samples on one side. Mineralised core is generally sampled on 1m or less intervals. Where sampled, non-mineralised core is quarter cut and sampled on 2m intervals. 			

Criteria	JORC Code explanation	Commentary			
Quality of assay data and laboratory tests	 The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. Nature of quality control procedures adopted (eg standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (ie lack of bias) and precision have been established. 	 Company inserted blanks are inserted as the first sample for every hole. A company inserted gold standard and a copper standard are inserted every 50th sample. No standard identification numbers are provided to the lab. Standards are checked against expected values to ensure they are within tolerance. No issues have been identified. 			
Verification of sampling and assaying	 The verification of significant intersections by either independent or alternative company personnel. The use of twinned holes. Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. Discuss any adjustment to assay data. 	 Historic production data has been collated from government open file reports. A Maxgeo SQL database is currently used in house for all historic and new records. Recent results have been reported directly from lab reports and sample sheets collated in excel. Results reported below the detection limit have been stored in the database at half the detection limit – eg <0.001ppm stored as 0.0005ppm 			
Location of data points	 Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used. Quality and adequacy of topographic control. 	 All hole locations were obtained using a Trimble SP60 GPS in UTM MGA94. Current RC holes were downhole surveyed by Reflex True North seeking gyro. 			
Data spacing and distribution	 Data spacing for reporting of Exploration Results. Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether sample compositing has been applied. 	 Further extensional and infill drilling is required to confirm the orientation and true width of the copper mineralisation intersected. 			
Orientation of data in relation to geological structure	 Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material. 	• All holes were considered to intersect the mineralisation at a reasonable angle.			
Sample security	 The measures taken to ensure sample security. 	 Recent RC drilling has had all samples immediately taken following drilling and submitted for assay by supervising Carnaby geology personnel. 			
Audits or reviews	 The results of any audits or reviews of sampling techniques and data. 	Not conducted			

Section 2 Reporting of Exploration Results

	_
	ľ
	t
	ľ t I
615	
	1
	/ 6
20	e
00	(
	(
60	
20	
699	
615	
	[
	[]
(\bigcirc)	

(Criteria listed in the preceding section also apply to this section).

	Criteria	Explanation	Commentary
	Mineral tenement and land tenure status	 Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area. 	 The Lady Fanny Prospect area encompassed by historical expired mining leases have been amalgamated into EPM14366 and is 100% owned by Carnaby. The Nil Desperandum Prospect is located on EPM14366 (82.5% interest acquired from Discovex). Discovex retain a 17.5% free carried interest in the project through to a Decision To Mine. At a Decision to Mine, Carnaby has the first right of refusal to acquire the remaining interest for fair market value.
	Acknowledgment and appraisal of exploration by other parties.	 Acknowledgment and appraisal of exploration by other parties. 	• There has been exploration work conducted over the Queensland project regions for over a century by previous explorers. The project comes with significant geoscientific information which covers the tenements and general region, including: a compiled database of 6658 drill hole (exploration and near-mine), 60,300 drilling assays and over 50,000 soils and stream sediment geochemistry results. This previous exploration work is understood to have been undertaken to an industry accepted standard and will be assessed in further detail as the projects are developed.
ELSON A	Geology	 Deposit type, geological setting and style of mineralisation. 	 The Nil Desperandum and Lady Fanny prospects area located in the Mary Kathleen domain of the eastern Fold Belt, Mount Isa Inlier. The Eastern Fold Belt is well known for copper, gold and copper-gold deposits; generally considered variants of IOCG deposits. The region hosts several long-lived mines and numerous historical workings. Deposits are structurally controlled, forming proximal to district-scale structures which are observable in mapped geology and geophysical images. Local controls on the distribution of mineralisation at the prospect scale can be more variable and is understood to be dependent on lithological domains present at the local-scale, and orientation with respect to structures and the stress-field during D3/D4 deformation, associated with mineralisation. Consolidation of the ground position around the mining centres of Tick Hill and Duchess and planned structural geology analysis enables Carnaby to effectively explore the area for gold and copper-gold deposits.
	Drill hole Information	 A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: easting and northing of the drill hole collar elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar dip and azimuth of the hole down hole length and interception 	• Included in report Refer to Appendix 1, Table 1.
		depth o hole length. If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case.	

Criteria	Explanation	Commentary			
Data aggregation methods	 In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (eg cutting of high grades) and cut-off grades are usually Material and should be stated. Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low-grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. The assumptions used for any reporting of metal equivalent values should be clearly stated. 	 Visual estimates given in Appendix 1, Table 2 represent the intervals as sampled and to be assayed. No metal equivalent values have been reported 			
Relationship between mineralisation widths and intercept lengths	 These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (eg 'down hole length, true width not known'). 	• All intervals are reported are downhole width and true widths are not definitively known. At Lady Fanny and Nil Desperandum drilling intersection angles are generally good and are a good representation of the thickness of the mineralised zones. At Nil Desperandum true thickness is generally about 70% of downhole width.			
Diagrams	 Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views. 	 See the body of the announcement. 			
Balanced reporting	 Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results. 	 Visual estimates of copper sulphides by individual meters are presented in Appendix 1, Table 2 			
Other substantive exploration data	 Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances. 	As discussed in the announcement			
Further work	 The nature and scale of planned further work (e.g. tests for lateral extensions or depth extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive. 	• Planned exploration works are detailed in the announcement.			